
1

Inter-domain Routing Scheme based on Secure Multi-Party

Computation over SDN Architecture
Xiaoling Ni Hui Zhao

School of Computer Science and Communication Engineering

Jiangsu University

Abstract

Method Design

The Internet including enterprise-level networks, data center

networks, and wide area networks can be divided into many

autonomous domains. Autonomous domains can be managed by

different administrative units or organizations. Therefore, when

calculating routes between domains, autonomous domains that do

not trust each other will have security and privacy considerations.

In order to solve the problem of cross-domain privacy protection

and optimize routing strategies, we propose an inter-domain routing

method based on secure multi-party computation under the SDN

architecture. Our method effectively protects the private

information in each domain and accelerates the convergence of

routing. We elaborated on the preliminary exploration of this idea,

and the evaluation showed that our solution only brings millisecond

latency.

Evaluation

Fig.2. The interaction process between the domain and the computing server cluster.

After passing through Export-All component, without destroying the privacy of domain

A, only domains that can obtain the correct key can obtain the corresponding routing

information.

We propose an inter-domain routing optimization method based on

secure multi-party computation over the SDN architecture. The

solution uses the global view feature of the SDN controller to

schedule routes and make inter-domain routing decisions, and is

based on the GMW protocol to achieve intra-domain privacy

protection. The results show that while ensuring the privacy in the

domain, the latency caused by the design of the scheme is limited.

Reference

Contact information

Contact person：Xiaoling Ni

Phone number：18852856507

Mailbox：18852856507@163.com

[1] D Gupta, A Segal, A Panda, et al. A new approach to

interdomain routing based on secure multi-party

computation[C]//Proceedings of the 11th ACM Workshop on Hot

Topics in Networks.

[2] M Chiesa, D Demmler, M Canini, M Schapira and T Schneider,

SIXPACK: securing internet exchange points against curious

onlookers[C]//Proceedings of the 13th International Conference on

emerging Networking Experiments and Technologies. 2017: 120-

133.

[3] D Demmler, T Schneider and M Zohner, ABY-a framework for

efficient mixed-protocol secure two-party computation[C]//The

Network and Distributed System Security Symposium , 2015.

Conclusion

优胜奖

Computing server cluster

Computing server 1

Computing server k

SDN domain1

controller

controller

SDN domain n

SDN domain1'

controller

SDN domain n'

controller

Domain A

route1

Domain X

Computing Server 1 Domain X

Domain Y

SMPC1

SMPC2

Computing Server 2

keyA

nonce1



ENC



nonce2

keyA

Domain X

route1

route1
route1

route1

nonce2

nonce1

keyA

Domain X

X1

Y1

X2

Y2

X1  X2

Y1  Y2

keyA

keyN

DEC route1

route1DEC

In this section we analyze the performance about latency of the

proposed scheme. The hardware with Intel (R) Core (TM) i7-9700 @

3.00GHz CPU, 16GB RAM consists of VMware Workstation. A

prototype system on three servers with Linux operation systems

needs to be implemented. We installed Mininet 2.3.0d6, Openvswitch

2.5.0, and Ryu 4.34 on one of the servers to simulate a SDN

environment. The network consists of 16 hosts, which are

interconnected using a fat tree of twenty 4-port switches. The other

two servers act as computing servers to interact with the domain

controller. The computing server is composed of a set of work

processes coordinated through a single processing program flow. We

implemented SMPC components shown in Fig.3 using the ABY

framework[3]. ABY provides low-level primitives for building

Boolean circuits that are evaluated efficiently with the GMW

protocol.

Fig.3 the processing time of the controller designed in this paper and the

calculation time of SMPC. Fig.3(a). Processing time of controllers based on

different network size. The processing time of the controller changes with the

network scale. When k=4, the average processing time of the SDN controller is

2.70 ms. Fig.3(b). Processing time of SMPC module based on SDN architecture.

The time of creating the input values for the SMPC processing is far less than the

time required to run the SMPC computation.

Fig.3(a) Processing time of

controllers based on different

network size.

Fig.3(b) Processing time of

SMPC module based on SDN

architecture.

Fig.3.Overview of the method design. The SDN domain, as the original participant,

interacts with 𝑘 computing servers to obtain BGP routes about their respective domains.

Among them, the computing servers run securemulti-party computation.

The scheme structure is as shown in Fig.3, the computing server

cluster is composed of 𝑘 independent and non-colluding computing
parties 𝑆1, 𝑆2,… , 𝑆𝑘 running the SMPC protocol. As the original

participant, each SDN domain will encrypt its routing strategy, divide

it into 𝑘 shares, and notify the computing server. Each computing

server in turn sends a part of its output to the original participant after
SMPC is completed, and the original participant uses the collected

multiple outputs to restore its routing information to the destination

domain.

In order to achieve efficient SMPC calculation, we model the routing
strategy[1] in each domain as follows according to the basic

definition of the routing strategy in section 2:

3. Design Details

𝑁 = 𝐶1 ,𝐶2 ,… ,𝐶𝑛 represents a series of SDN domains, 𝑅 =
𝑟1 ,𝑟2 ,… , 𝑟𝑚 is the reachable route in each domain, and we define

the egress strategy as an 𝑛 ∗𝑚 matrix𝐺. If 𝐺𝑖,𝑗 is 1, it means that

the route 𝑟𝑗 can reach 𝐶𝑖, otherwise, 𝐺𝑖,𝑗 is 0, where 1 ≤ 𝑖 ≤ 𝑛，

1 ≤ 𝑗 ≤ 𝑚. The controller of each SDN domain prioritizes the

reachable routes in its domain according to certain attributes such

as hop count and bandwidth. When the egress strategy is the same,

the route with higher priority should be considered. Our scheme

takes 𝑘 = 2, that is, two computing servers as an example. For the

module design of this part, we refer to the design ideas in [2] like

Fig.2. The difference is that we define that an SDN controller

undertake the main body of the computing task, and the computing

server can also be selected from all SDN controllers.

1. Threat Model and Design Goal

Generally speaking, adversaries will compromise nodes(such as routers or

switches) in the domain and disrupt the routing process within the domain
by identifying active routers or switches and other network forwarding

devices. In order to protect the privacy in the domain, we need to prevent

the adversary from knowing the route. In the SDN domain, the rules of

whether routers or switch nodes forward and how to forward are all made
by the SDN controller. Therefore, the privacy mentioned of our method

means that the behavior of how the router or switch forwards data packets

formulated by the SDN controller should be protected. On the other hand,

when the sender and the receiver are not in the same domain, that is, when
the data transmission between the two needs to span multiple domains, the

relevant information in the SDN domain is protected while ensuring that

the routing path between the sender and the receiver is optimal to save

network resources.

In our design, like BGP, in each SDN domain, the SDN controller

calculates the path to each target IP prefix according to the global network

view it owns, and sorts the path information according to the priority of

different attributes , As one of the routing strategies owned by the SDN
controller, in addition, the SDN controller can link the domain to other

neighbors, that is, through a neighbor, whether the current domain can

successfully forward the data packet to the destination nodes will also be

used as one of its routing strategies. In SMPC, these routing strategies are
all expressed as the private input𝑥𝑖 of the SDN domain.

2. Basic Definition

We define the participating roles in the method as follows:

Definition 1: The original participant, acting as an input provider, is

generally embodied as an autonomous domain. In our method, we use an

SDN network architecture, so tasks such as computing routing in the SDN

domain are undertaken by SDN controller, It has all the routing

information in the domain, so we define the original participant as the SDN

controller, which is represented as 𝐶1 ,𝐶2 ,… , 𝐶𝑛 , which can also

represent the correspondingdomain.

Definition 2: The computing participants are a group of computing servers

that perform SMPC, expressed as 𝑆1 ,𝑆2 ,… ,𝑆𝑘 . When multiple rounds of

communication and calculations are required between domains, and each

group of participants may be required to exchange messages in each round,

this is obviously impractical in the case of large 𝑛, and the cost is

extremely high. Therefore, we refer to the model in [1] and outsource

computing tasks to computing server clusters. These computing servers

can be selected from all SDN controllers and selected randomly. This is to

save network resources while preventing the computing servers from being

compromised. Each random selection can ensure the freshness of the

computingservers.

Each SDN domain controller divides its own routing strategy 𝑥𝑖 into 𝑘
shares, and passes the results to 𝑘 computing server clusters as input to

their computing programs. The computing server cluster performs SMPC

based on these inputs to calculate the output. After the calculation is

completed, the calculation results of these computing servers each have a

part of each SDN domain route, and these results are sent to the

controllers of each domain, and the controller learns how to reach the

destination by combining the 𝑘 shares of routing information.

