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Abstract

NETWORK STRATEGY

As Android phones become the mainstream of smartphones, more and

more malicious applications are being developed to attack the system and

steal user information. Many researches based on machine learning can

automatically detect Android malware currently. In spite of that, these

methods require manual feature selection, which relies on experience and

may loss major features. In this paper, we propose a tiny Android

malware detection model named MFENet. This model is based on the

one-dimensional convolutional neural network (1D CNN). The core of

the model is MFEBlock, which can extract key features and fuse them

automatically. This model got 94.62% accuracy on the test dataset, which

achieves the outstanding results for Android malware detection on an

open dataset.

3. MFENet

We named this Network as MFENet (Multi-scale Features Extract

and Fusion Network), as shown Fig. 3 and Table I. In this network,

feature extraction and classification are split into two principal parts. In

feature extraction, we first use a 3x1 kernel 1d convolution layer to

extract low-level information, a batch normalization layer and a ReLU

activation layer. Then we use three MFEBlocks to obtain different scale

information. We use global pooling technology to convert the extracted

feature maps into feature vectors. Finally an FC layer is used for the

final classification.

Experiment
1.Dataset

Our experiments are based on a public data flow dataset supported

by Avdiienko, which includes 3733 data flow features extracted from

17897 samples (including 2799 negative samples and 15098 positive

ones).

In this paper, we use 1D convolution, so the malicious features do

not need to convert to the matrix and reduce the risk of information

loss. To retain more information, we abandon the pooling layers.

Moreover, we design a novel block, which can extract multilevel

features and fuse them effectively. In order to better evaluate the

performance of the model, we have defined a new indicator MTC.

Regardless of test accuracy, test error, or MTC, our proposed model

achieves the outstanding results on this public data set.
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Conclusion

2. Experiment Result

优胜奖

 

Algorithm 1 MFENet training process 

Input: 

Ds : the raw dataset 

,Ep Bs : training epochs and batch size for MFENet 

Output: A trained MFENet model 

Function:  

1.  For i =1 to Ep do 

2.      For b =1 to size( Ds )/ Bs  do 

3.          get the data x and label y from dataset 

4.          get predictions z from MFENet 

5.          = [ log (1 )log(1 )]L y z y z− + − −   

6.          use back propagation algorithm to update W 

and b 

7.      end For 

8.  end For 

Model TrainLoss TestLoss TrainAcc TestAcc MTC 

Alexnet 0.0226  0.3514  99.10 94.25 15.55 

VGG16 0.0352  0.3123  98.70 93.89 11.59 

Googlenet 0.0224  0.3046  99.16 94.18 10.73 

Resnet18 0.0277  0.3440 98.89 93.31 10.86 

MFENet(ours) 0.0227  0.2697  99.11 94.62 8.45 

 

Model Accuracy 

Gaussian Naive Bayes 87.11% 

LogisticRegression 92.59% 

K-NearestNeighbor 90.3% 

Decision Tree 92.89% 

Adaboost 92.49% 

Gradient Boost Decision Tree 93.16% 

MFENet(ours) 94.62% 

 

4.Trainging Methodology
Our networks were trained using the deep learning framework

Pytorch and graphics card is GTX1050. We use Adam as the

network’s optimizer and cross-entropy as the network’s criterion.

During the training process (as shown in Algorithm 1), we record the

time spent in each epoch. The final train loss, test loss, train accuracy

and test accuracy will also be taken down as the experimental results.

3. Horizontal Comparisons

To better demonstrate the effectiveness of our model, in this section, 

we have trained a variety of classic machine learning models to 

compare MFENet's detection capabilities with those of these models 

on Android malware. As can be shown in following table, MFENet

got the supreme performance.

1. Pretreatment method

As Android software has many features, if they are all placed in the

same channel, the training cost of the entire network will be seriously

increased. If they are evenly placed on multiple channels, the training

speed of the network will be greatly accelerated, and no information will

be lost.

Based on this idea, we propose a preprocessing method. Assuming that

the number of features is 𝑚, then square 𝑚 and round up to get 𝑝 as the

number of channels to be divided. However, 𝑛 (𝑛 = 𝑝 ∗ 𝑝) is less than or

equal to 𝑚, so we need to fill it with 0. In this process, the original

feature vector (size 𝑚) can be multiplied by an identity matrix of size

𝑚 ∗ 𝑛 to obtain a new feature vector of size n. To prevent the information

of the last channe1 from being filled with 0, we insert 0 into the

beginning and end of the original feature vector. This can be achieved by

setting the index of the diagonal element. The specific algorithm is as

follows:

𝑘 =
1

2
𝑛 −𝑚

Which 𝑘 is the index of diagonal element. The following is an example

of this algorithm.

1 0 2 3 ……0 4 3 1 ∗

0 1 0 ……0 0 0
0 0 1…… 0 0 0
………………
0 0 0 ……0 1 0

= 0 1 2 3 ……0 4 3 1 0

2. MFEBlock

The key to our model is the block. For the purpose to extract more

details form the raw features, we design a novel block called MFEBlock

(Multi-scale Features Extract and Fusion Block). This block is composed

of three paths, one merged layer and one residual pathway. The first path

has the minimum receptive field and its training speed is the fastest of the

three. The second path has a good receptive field and faster training

speed. The last path has the maximum receptive field, so it can extract

most information but its training speed is lowest among three. The

merged layer consists of a lx1 kernel lD convolution layer, a batch

normalization layer and a ReLU activation layer, which is similar to the

first way. The previous layer 𝑥 went through 3 different routes and got

𝑦1,𝑦2, 𝑦3. Then we add them up to get 𝑦, which would be the input of the

merged layer. If the block does not work, the previous layer x can also go

through the residual pathway. Therefore, this block can be stacked in

multiples while maintaining a minimal amount of parameters and high

training speed.

We evaluate our network MFENet with other models from three

indicators: MTC, loss and accuracy.

MTC (Mean Training Cost) is a new indicator defined by us to

judge the comprehensive performance of training time and parameter

memory indicators. It can expressed as :𝑀𝑇𝐶 = 𝑀 ∗ 𝑇, where 𝑀 is

the memory occupied by the models and theirs parameters, 𝑇 is the

time spent training this model every epoch.

Taking accuracy as an indicator is currently a popular choice, we

also compare our model MFENet with other networks. In the testing

accuracy, MFENet got 94.62% score and is the highest score in these

models. To make the score more credible, all these scores are

collected in the final epoch and are the average in 5 folds cross-

validations.

In summary, the experiment shows that MFENet performs best

among the models we list. Not only the test accuracy and loss, but also

the performance of MTC is the best.
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