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Abstract

Proposed Method 

Deep speaker embedding model has achieved the satisfactory

performance in close-talking speaker verification. However, in the real

home environment, the device used to record voice may be different and

the distance between speaker and device is constantly changing. These

will make performance degradation. In this paper, a novel approach of

adversarial multi-task training is proposed to solve the problem of

device mismatch and location variation by learning device-invariant and

location-invariant embeddings. A gradient reversal layer and a device-

and-location classifier are added to the speaker validation model in

order to build an auxiliary adversarial task. Experiments are conducted

on the far-field text-dependent speaker verification database called HI-

MIA, the proposed approach achieves 28% Equal Error Rate (EER) in

close-talking enrollment task and achieves 9% EER in far-field

enrollment task.

1. Architecture
The proposed method for speaker verification (SV) consists of

three main components, including a deep speaker embedding module, a

speaker classification task module, and a device-and-location

classification adversarial task module. During training, speaker

classification task and device-and-location classification adversarial

task jointly optimize the deep speaker embedding module. During

testing, deep speaker embedding module transforms utterances into

embeddings, and the similarity of embeddings between registered

utterances and test utterances are computed to determine the identity of

the speakers.

4. Device-and-location classification adversarial task
To address the problem of device mismatch and location variation,

the device-and-location classification adversarial task is added to the

model as an auxiliary task. Using gradient reversal layer (GRL) to

establish an adversarial process, deep speaker embedding module learns

device-invariant and location-invariant embeddings.

It can be seen from Fig.1, device-and-location classification

adversarial task module includes a GRL, a fully connected layer, and a

device-and-location classifier. The input of gradient reversal layer are

embeddings of the output of the deep speaker embedding module. In

forward propagation, GRL is equivalent to a constant equality

transformation. In back propagation, the gradients of device-and-

location classifier is inversely propagated into the front network by

GRL, thus enabling an adversarial loss similar to that of GANs. Device

and location information in embeddings will be faded out during

adversarial training. Therefore, deep speaker embedding module learns

device-invariant and location-invariant embeddings.

Experiment

It can be seen from the table that transfer learning is effective and

can provide good initialization parameters. The performance of

AAM-Softmax is better than that of Softmax, this proves that it is

necessary to increase the distance between classes and reduce the

distance within classes. In addition, our proposed multi-task

confrontation training method can also improve performance.

In this paper, we propose a novel approach to adversarial multi-task

training to address the device mismatch problem and location

variation in speaker verification. A device-and-location classifier

and a GRL are added to the model. The deep speaker embedding

module can learns device-invariant and location-invariant

embeddings by adversarial training. We also investigate two loss

functions, SoftMax and AAM-SoftMax. AAM-SoftMax reduces

intra-class distances and increases inter-class distances and gets

better performance. Experiments are conducted on the HI-MIA

database. The proposed method achieves a 28% relative

improvement in EER over the baseline in the close-talking task and

achieves a 9% relative improvement in EER over the baseline in the

far-field enrollment task.

5. Optimization
The loss of speaker classification task is minimized, while the loss of

device-and-location classification adversarial task is maximized.

Through the speaker classification task, the deep speaker embedding

module can learn the discriminative representation of the speaker, and
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2. Deep speaker embedding module
Deep speaker embedding module includes three parts, a feature

extractor, a pooling layer and a fully connected layer. The function of

the feature extractor is to convert speech sequences into frame-level

representations. ResNet can be able to solve the gradient disappearance

problem by skip connections and has a good ability to learn

representations. In this paper, ResNet34 is used as feature extractor. It is

very important to translate frame-level representations into utterance-

level representations by pooling function. GSP can provide more

detailed information than global average pooling (GAP), so it is used as

pooling function. Even though the frames of the speech signals are not

as same in length, GSP is also able to translate them into the same

dimension. The full connection layer outputs embeddings with

discriminating information about the speaker.

3. Speaker Classification Task
In order for the deep speaker embedding module to learn speaker

discriminative embeddings, the speaker classification task is significant

as the primary task. Embeddings are mapped to the speaker categories

and constrained by the speaker loss function. In this paper, two loss

functions, SoftMax and Additive Angular Margin SoftMax (AAM-

SoftMax) , will be investigated. AAM-SoftMax is an improvement on

SoftMax with the addition of angular distance constraints. AAM-

SoftMax reduces intra-class distances and increases inter-class

distances. AAM-SoftMax is defined as follows:
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Where 𝜃𝑖,𝑗 is the angle between the column vector 𝑊𝑗 and 𝑥𝑖, 𝑠 is a

scaling factor and 𝑚 is a hyperparameter controlling the margin.
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Conclusion

2. Front-end Processing And Experimental Setups
In this paper, Log Mel-filterbank energies (Fbank) features are

used as an input to the model. The speech signals are framed in 25ms

windows with a 10ms slide. Each audio is converted into 64-

dimensional Fbank features. Voice activity detection (VAD) is used

to remove silent segments in utterances to reduce the amount of data

and improve speech quality. All utterances use energy-based VAD to

remove silent segments.

The average length of the utterances in the database is 1 second,

so the number of frames of speech features is randomly set from 100

to 140 in training. Because of insufficient data, the model is prone to

overfitting. The validation set is used for training and the last training

parameters are used for testing. The batch-size is set to 64. The

initial learning rate is 1e-3, which drops to one-tenth of the original

every 100 epochs.

Fig.1 Structure diagram of adversarial multitasking method

through the device-and-location classification adversarial task, the

deep speaker embedding module can learns device-invariant and

location-invariant representation.

The loss of the speaker classification task is LAAM-SoftMax, denoted as

Lspeaker. The loss function of the device-and-location classification

adversarial task is a combination of SoftMax and cross entropy,

denoted as Ld-and-l. then the final loss function is defined as:

𝐿𝑓𝑖𝑛𝑎𝑙 = 𝐿𝑠𝑝𝑒𝑎𝑘𝑒𝑟 + 𝛼 × 𝐿𝑑−𝑎𝑛𝑑−𝑙

1. Database
HI-MIA is a far-field text-dependent SV database. The database

contains recordings of 340 people in rooms designed for the real

home and far-field scenario. Recordings are captured by multiple

microphone arrays located in different directions and distance to the

speaker and a high-fidelity close-talking microphone. The circular

microphone array contains 16 channels, each of which records in

16kHz, 16 bit. The close-talking microphone records high fidelity

clean speech in 44.1kHz, 16 bit.

3. Results
Table 1. Performances of the SV systems. ‘TL’ represents whether to

use pre-trained models for transfer learning; ’AT’ represents whether

to use adversarial multi-task training.

Model
Task 1 Task 2

EER minDCF EER minDCF

Resnet(Softmax,TL) 4.71% - 3.70% -

Resnet(Softmax) 6.26% 0.72 5.82% 0.57

Resnet(AAM-Softmax) 5.58% 0.56 5.01% 0.52

Resnet(AAM-Softmax,AT) 5.12% 0.54 5.08% 0.51

Resnet(Softmax,TL) 4.42% 0.43 4.01% 0.32

Resnet(AAM-Softmax,TL) 3.76% 0.35 3.46% 0.32

Resnet(AAM-Softmax,TL,AT) 3.38% 0.35 3.36% 0.26
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