
1

An efficient Byzantine fault-tolerant consensus 
mechanism based on threshold signature

Wenxuan Jiang, LiquanChen, Yu Wang, Sijie Qian
School of Cyber Science and Engineering, Southeast University

Abstract

Algorithm

In the application scenario of PKI system, the amount of written 
data is huge and the consensus will consume a lot of resources. In order 
to reduce the communication complexity and optimize the master node 
election process, this paper proposes Threshold Signature Practical 
Byzantine Fault Tolerant(TS-PBFT), an efficient Byzantine Fault 
Tolerant consensus mechanism based on the Threshold Signature. This 
consensus mechanism firstly adds the Threshold Signature technique to 
the PBFT algorithm with Byzantine Fault Tolerant, which reduces the 
communication complexity to O(n) level; secondly, it introduces the 
external monitoring mechanism and node trustworthiness index to 
improve the master node election strategy; Finally, it adds the batch 
processing mechanism to improve the performance of the consensus 
process. Compared with the PBFT algorithm, the TS-PBFT algorithm 
increases the throughput, reduces the delay, and decreases the out block 
time, which improves the performance of the algorithm.

1. Model of TS-PBFT Scheme
The entities involved in the mechanism improved in this paper 

include the Client, the Consensus Network (Quorum), the master node 
(Primary), the Commit-Message Signer (C-Signer), the Execute-
Message Signer (E-Signer). The TS-PBFT consensus mechanism 
distributes some of the functions of the master node (Primary) to the 
signer node (C-Signer, E-Signer). The total number of nodes for the TS-
PBFT consensus mechanism's threat model is n=3f+2c+1, which 
contains f Byzantine error nodes (malicious nodes) and c non-Byzantine 
error nodes (fault nodes).

Experimentation

In order to adapt  to the PKI scenario,  the funct ional 
requirements of communication complexity reduction, master node 
election optimization and consensus request batch processing are 
then proposed. This paper proposes an efficient Byzantine fault-
tolerant consensus mechanism based on threshold signature TS-
PBFT, and analyzes and compares the original PBFT consensus 
mechanism and the improved TS-PBFT consensus mechanism. The 
experimental results show that TS-PBFT outperforms PBFT in terms 
of throughput, latency and out-block time. 

For the Byzantine fault-tolerant consensus mechanism, 
although the TS-PBFT proposed in this paper makes a great 
improvement in the efficiency of the consistency protocol, there is 
still a large room for improvement in the view switching protocol 
and the checkpoint protocol. At the same time, it is also a 
worthwhile optimization direction to integrate the BFT class 
consensus mechanism with the token-based consensus mechanisms 
such as PoW, PoS and DPoS to make up for the shortcomings of the 
small number of nodes that can be accommodated by the BFT class 
consensus mechanism with their high scalability. 

Main References

Contact Information
Contact Person：Wenxuan Jiang
Mobile Phone：15850535690
Mailbox：947796931@qq.com

[1] Zhen Y, Yue M, Zhong-Yu C, Chang-bing T and Xin C. Zero-
determinant strategy for the algorithm optimize of blockchain PoW 
consensus. 36th Chinese Control Conference(CCC), 2017: 1442-
1447.
[2]Košt’ál K, Krupa T, Gembec M, Vereš I, Ries M and Kotuliak I. 
On Transition between PoW and PoS. International Symposium 
ELMAR, 2018:207-210.
etc.

Conclusion

The Hyperledger Fabric v0.6 implementation is chosen to 
compare the performance differences between TS-PBFT and the 
PBFT consensus mechanism. The consensus is written in the Go 
language. The performance metrics are throughput, latency, and out-
block time, respectively.

TS-PBFT has a higher throughput in fast mode (f=0) than in 
linear mode (f=1) . The throughput also decreases when there is a 
faulty node (c=1) in the consensus network.

Both PBFT and TS-PBFT have long processing times (between 
40 and 120 seconds) at high concurrent requests. However, TS-PBFT 
has a communication complexity level  in both two modes(f=0,1) .

As the number of concurrent requests gradually increases, both 
PBFT and TS-PBFT show a significant increase in the out-block 
time. At 100,000 concurrent requests, TS-PBFT continues to operate 
normally. 

Fig. 1 Overall model of the TS-PBFT consensus mechanism

一等奖

Fig. 2 Comparison of throughput performance

Fig. 3 Delay performance comparison

Fig. 4 Performance Comparison of Outgoing Block Time

2. Quick consensus protocols (normal)
The quick consensus protocol process for TS-PBFT is as follows.

1) Request phase: The client C sends a transaction request r to master 
node P in consensus network Q with format <Request,o,t,C>.
2) Request-Broadcast phase: The master node P assigns a sequence 
number s upon the request, waits until at least n>=b requests has been 
received, and then assembles the n received requests into a transaction 
group R=(r1,…,rn). Finally, broadcast the request distribution message 
<Request-Broadcast,s,v,R> to all consensus nodes.
3) Consistency-Share & Consistency-Proof phase:

a) The backup node i verifies the received message and accepts. 
Calculate hash value h=H(s,v,R). Sign the hash using a subkey to get 
ξ(h)i. Send message <Consistency-Share,s,v,ξ(h)i> to C-Signer.

b) C-Signer receives, checks and accepts message. Once C-Signer 
has received 3f+c+1 messages, it calculates overall threshold signature 
ξ(h) and broadcasts a validation certificate message <Consistency-
Proof,s,v,ξ(h)>. The backup node calculates hash and verify the overall 
threshold signature, execute the transaction group R if passes.
4) Executed-Share & Executed-Proof Phase: 

a) The state update from state χs-1 to χs after it completes all 
transactions in group R. The backup node I computes a hash d=H(χs) 
and perform a partial threshold signature π(d)i on d.

b) Send message <Executed-Share,s,π(d)i> to the E-Signer. The E-
Signer receives the message and verifies the partial threshold signature. 
If passed, log it to the local cache. Once E-Signer receives f+1 
messages, calculate its overall threshold signature π(d). Generate and 
broadcast execution confirmation message <Executed-Proof,s,π(d)>. 
Validates the signature and ends consensus.
5) Reply phase: E-Signer sends an execution confirmation message 
<Executed-Done,o,l,s,χs,π(d),Merkle> to inform that the request o was 
executed successfully. The client C receives the message and checks its 
signature, and then does Merkle proof <Verify,o,l,s,χs,π(d),Merkle> on 
it, and acknowledges if the message meets the expectation.

3. Linear Consistency Protocol (Exceptions)
If C-Signer does not collect 3f+c+1 shared signature message 

<Sign-Share,s,v,ξ(h)i> within the specified time, the system enters a 
linear mode. The differences are as follows.
1) Request-Broadcast phase: Once receiving 3f+c+1 shared signature 
messages, The C-Signer (the master node) generates and broadcasts a 
request distribution message <Request-Broadcast-Slow,s,v,τ(h)>. 
2) Consistency-Share-Slow & Consistency-Proof-Slow phase: The 
backup node receives, verifies and accepts the message. Then generate a 
shared signature message <Consistency-Share-Slow,s,v,τi(τ(h))> and 
sent it to C-Signer. Once C-Signer receives 2f+c+1 message, calculates 
its overall threshold signature τ(τ(h)) and broadcasts message 
<Consistency-Proof-Slow,s,v,τ(τ(h))>. The backup node i calculates the 
hash, verify threshold signatures and executes the transaction group R.

4. View change protocols
TS-PBFT consensus mechanism has two modes. Therefore, TS-

PBFT designs a new view-switching protocol.
1) Master node election: In this chapter, the Reliability Level (RL) 

is designed to measure the trustworthiness of a single node, which is 
used as a reference to elect a master node. The iterative calculation of 
the Reliability Level indicator for nodes is as follows:

                                                 (1)
With this algorithm, a node with higher credibility will have a 

higher probability of becoming a master node at each election; it also 
avoids the situation where a single node becomes a master node 
multiple times; and finally, it can effectively punish nodes for inaction 
by receiving external monitoring.

1 _ _v vRL RL if leader num audit       

With this algorithm, a node with higher credibility will have a 
higher probability of becoming a master node at each election; it also 
avoids the situation where a single node becomes a master node 
multiple times; and finally, it can effectively punish nodes for 
inaction by receiving external monitoring.

2) Launching a new view: The backup node i generates a view 
switch message <View-Change,v,ls,χ(ls)s,χ(ls+1),…,χ(ls+win)> and 
sends it to the new master node. The new master node receives at 
least 2f+2c+1 messages then sets the new view number v*=v+1, and 
sends the previously collected set of message I to all backup nodes in 
a new view message <New-View,v*,I>.

3) Receive the new view: Backup node i extracts message group 
I and processes the 2f+2c+1 messages one by one according to the 
sequence number size from lowest to highest. For each of these * 
messages, if a record of the fast-mode and the line-mode commit 
proof message is found in the local cache, then recognizing its state 
digest signature.


